
InternetWide Identity with Realm Crossover

OpenFortress
digital signatures

*

seasons of change

Winter for percolation and reflection. . .
* Bring Your Own IDentity
* Identity, Access Control, Groups

Spring for support libraries, demonstrations
* ARPA2 Common: Identity, Access, Group
* Realm Crossover: SASL, Kerberos

Summer for protocols and applications
* Apache, GnuTLS-KDH, Postfix, Reservoir, KIP, HAAN

Autumn for harvesting
* IETF standardisation
* Domain Hosting provisioners
* Users gaining control over their online presence

| internetwide | intro OpenFortress*

thanks for support

Many have supported our work:

* NLnet liberally supports this project
* SIDNfonds supports our work on email with ARPA2 Identity
* SURFnet supported KXOVER
* RVO has supported our developers through WBSO
* NGI Pointer from the EU intends to support Realm Crossover

Thank you all for making this possible!

| internetwide | intro OpenFortress*

current activity

Henri Manson is our integrator.
Works on SASL over Diameter, Apache modules.

Adriaan de Groot is our build hero.
has a focus on LDAP, and on project/build infrastructure.

Tom Vrancken is our 2nd cryptographer.
Works on TLS-KDH, including the GnuTLS code.

Rick van Rein is the project architect.
Works on specifications / IETF work, cryptography, API design,
fitting puzzle pieces together.

We do this work strictly for open source / protocols / standards.

| internetwide | intro OpenFortress*

steep challenge

We want to make an identity system for the Internet
* Grant users full control over their online identity
* Support them with easy-enough security and privacy

We do not take this lightly. . .
* This is not just for the web
* This is not just for one domain
* We retrofit the ideas into existing protocols
* We retrofit the ideas into existing software
* We take the effort to write Internet Drafts
* We take the effort to discuss Internet Drafts

The big question is usually
* Can we map our model to others?

| internetwide | intro OpenFortress*

bring your own identity

Controling your online identity?
Bring it under your own domain name

john@example.com

* Domains like example.com can be validated
* Identities like john are distributed by the domain
* User naming is the prerogative of a domain

* Now we need protocols to do this. . .

→ Most protocols incorporate SASL or Kerberos
→ Others can usually add SASL (HTTP, EAP)

See: draft-vanrein-internetwide-realm-crossover

| internetwide | byoid OpenFortress*

realm crossover for kerberos

Kerberos identities are the prerogative of a KDC

KDCs can crossover via a special ticket,

krbtgt/EXAMPLE.ORG@EXAMPLE.COM

* This is issued to clients of example.com
* It points to services under example.org
* Kerberos is funny about capitalisation

KDC crossover involves (manual) key exchange
* We automate this with DNSSEC/DANE/TLS
* KXOVER = Realm Crossover for Kerberos
* https://gitlab.com/arpa2/kxover

| internetwide | byoid OpenFortress*

https://gitlab.com/arpa2/kxover

realm crossover for sasl

SXOVER = SASL with end-to-end encryption wrapper
* Client shares a key with its own IdP
* SASL flows through a service back to the IdP

Need to make callbacks from any application
* Adding SASL attributes to Diameter
* Diameter is like RADIUS, but for untrusted networks
* domain SRV → SCTP/DTLS peering → secure traffic

Applications connect to a local Diameter agent
* Using a simple library and a TCP connection
* Applications may fork, thread, event-loop

Very easy to add to applications
* We provide an Apache module, KIP, Reservoir, . . .
* Application programmers should feel free to pick it up
| internetwide | byoid OpenFortress*

realm crossover for certificates

uid=john,dc=example,dc=com

* DNSSEC can assure the dc=example,dc=com part
* A domain CA could validate the uid=john part
* DANE could confirm the validity of the domain CA
* client-identity.example.com IN TLSA . . .

* Currently just an idea

Many use cases:
* Client identity for S/MIME (encryption, signing)
* Client identity for TLS protocols (login)

| internetwide | byoid OpenFortress*

arpa2 identity

Identities are Network Access Identifiers
* RFC 7542 form utf8-username ”@” utf8-realm
* We delegate the complexities of Punycode to DNS

The utf8-username can have + between words:
* john is a regular user identity
* john+cook and john+cook+vegan are aliases
* +docs+1234 is a service docs with argument 1234
* john+G9ASORZGC3DBNRQQU+ is a signed identity

http://common.arpa2.net/md doc IDENTITY.html

| internetwide | a2id OpenFortress*

http://common.arpa2.net/md_doc_IDENTITY.html

arpa2 signed identity

john+G9ASORZGC3DBNRQQU+@example.com is a signed identity

* Aimed at user john@example.com
* With a few signature flags G9. . .
* With an optional expiration date AS. . .
* With a checksum ORZGC3DBNRQQU over contextual data
→ Restrictions on remote user, domain
→ Restrictions on session identities
→ Restrictions on topic, subject

| internetwide | a2id OpenFortress*

arpa2 guest identity

This is a local alias for a remote user

* Aliases under a userid like guest@example.com
*Signature-based: guest+GMZWG6ZLMN5SWY33FBI+@example.com
* Restricts remote ruser@rdomain but does not mention it
* Friendly to Realm Crossover, with consistent translations
* GMZWG6ZLMN5SWY33FBI may map back to ruser@rdomain
* Better aliases for email, XMPP, SIP, . . .

| internetwide | a2id OpenFortress*

arpa2 selectors

ARPA2 Selectors are patterns for ARPA2 Identities.

ARPA2 Selectors are sets of ARPA2 Identities.

* john@example.com matches just one identity
* @example.com matches any user under a domain
* @.example.com matches any user under any subdomain
* @. matches any user under any domain

ARPA2 Selectors help us in Access Control

http://common.arpa2.net/md doc IDENTITY.html

| internetwide | a2id | a2sel OpenFortress*

http://common.arpa2.net/md_doc_IDENTITY.html

arpa2 access control

˜@. %R ˜john@example.com %RW

* Access Control to a Document

* Access Control to a Local Identity (for Communication)

* Attributes can be set to modify semantics

* Rules are stored in a database or an application context

http://common.arpa2.net/md doc ACCESS DOCUMENT.html

http://common.arpa2.net/md doc ACCESS COMM.html

| internetwide | a2id | acl OpenFortress*

http://common.arpa2.net/md_doc_ACCESS_DOCUMENT.html
http://common.arpa2.net/md_doc_ACCESS_COMM.html

access control and signed identity

* We always check signatures on input
→ . . . but will accept if none present
→ . . . and require presence during Access Control

* We always add signatures on output
→ . . . for which we may add a recipe while sending
→ . . . and we skip signing without such a recipe

| internetwide | a2id | acl OpenFortress*

arpa2 groups

Like UNIX groupid. . . generalised to remote access

* Identities are as for users cooks@example.com
* Members add an alias cooks+johann@example.com
* Guests add a signature cooks+GEA2DGIBRGAQ+@example.com
* Incoming data: Map identities to group member
* Outgoing data: Map group member to delivery address
* Member selection: cooks+johann@example.com
* Member filter : cooks+johann+marie@example.com

This API is currently under development

| internetwide | a2id | group OpenFortress*

arpa2 groups are local

Groups can welcome remote and local users alike

Members are addressed under the group and it’s domain
* SPF and DKIM never break on this scheme
* Services can use this for privacy by default
* Admins can break privacy to handle abuse

Better option than email forwarding:
* Define a group with the delivery address as a member
* Before email forwarding, make the sender a local guest

| internetwide | a2id | group OpenFortress*

protocol: tls-kdh

* Kerberos authentication, ECDHE encryption
* Incorporate ticket key for Quantum Relief
* Extremely fast (like OpenSSH with Kerberos)
* See: draft-vanrein-tls-kdh

* Cryptographers: Rick van Rein, Tom Vrancken
* TA4NGI of daasi.de: Python CMS += TLS-KDH

| internetwide | proto OpenFortress*

protocol: http-sasl

Most protocol support SASL authentication, but not HTTP
* We add WWW-Authenticate: SASL
* Attributes realm, mech, c2s, s2c
* Integration with HTTP Status and such
* See: draft-vanrein-httpauth-sasl

| internetwide | proto OpenFortress*

protocol: kip

Encryption with Keyful Identity Protocol:
* Encrypt with a random sesion key
* ACL + session key → KIP → key mud
* Encrypted data + key mud → recipients
* SASL authentication + key mud → KIP → session key
* Decrypt data with session key
* https://gitlab.com/arpa2/kip/

Make keys available after authentication

Cut out the middle certificate

| internetwide | proto OpenFortress*

https://gitlab.com/arpa2/kip/

protocol: haan

To generate a free identity:
* HAAN Service holds a static key
* HAAN Service generates a random userid
* HAAN Service melts key and userid to a password
* HAAN Service sends domain, userid, password

To lookup a HAAN password for a SASL mechanism:
* HAAN Service holds a static key
* HAAN Service melts key and userid to a password
* HAAN Service lets any SASL mechanisms test the password

Have as many as you like – they’re free

Bootstrap your online identity – without email

| internetwide | proto OpenFortress*

application: apache

A useful test platform; Henri and Rick make modules for:
* HTTP-SASL with a Cyrus-SASL2 backend
* HTTP-SASL with a Diameter backend (for Realm Crossover)
* HTTP userdir with a User: john header
* ARPA2 Access Control
* https://gitlab.com/arpa2/apachemod

Imagine an HTTP service with no accounts!

| internetwide | apps OpenFortress*

https://gitlab.com/arpa2/apachemod

application: reservoir

Reservoir is our object store in standard protocols
* Metadata is searchable in LDAP
* ARPA2 Access Control (on Collections)
* Objectdata retrievable via any protocol
→ HTTP for Download links
→ AMQP for Inboxes and Outqueues
→ MSRP for Document Exchange during SIP calls
→ SFTP for Direct Access

* https://gitlab.com/arpa2/reservoir

Imagine a Reservoir store for your Project Group

| internetwide | apps OpenFortress*

https://gitlab.com/arpa2/reservoir

application: haan

HAAN can be a Public Service run under a subdomain:
* Protocol stack: Diameter, SASL, HAAN
* Every public service has it own fixed key
* No need to store anything, low expected use
* Users can have many, stored with friends or lawyers
* Helps to build user freedom to move

HAAN is intended as fallback authentication:
* Realm Crossover for SASL is all you need
* The public service reports valid identity
* The rescued service can map the identity to a local one

| internetwide | apps OpenFortress*

application: yours!

We are hoping to get Realm Crossover into services
* We intend to modestly fund open source modules
* We prefer those with the highest impact
* Talk to us if you have an idea; hint others

Some projects may be more complex
* Kamailio with Realm Crossover? Might get hairy.
* Python http.* with Realm Crossover? Cool.
* SASL with Realm Crossover in your password manager? Nice.
* Maybe consider your own NGI Pointer project:
* https://pointer.ngi.eu/open-calls/

| internetwide | apps OpenFortress*

https://pointer.ngi.eu/open-calls/

thanks for listening

* We want to given users control over their online presence

* We design this stuff for domain hosting parties

* We focus on core libraries, protocols, daemons

* We cannot do everything, even if we want to

→ We would love to see this in more applications

→ We can use support when proposing Internet Drafts

| internetwide | final OpenFortress*

info@openfortress.nl
http://openfortress.nl

OpenFortress
digital signatures

*

