
SECURITY IN SOFTWARE
DEVELOPMENT

SECURITY IN AGILE ONLINE SOFTWARE DEVELOPMENT

ABOUT TEKKAMAKI

▸ Security Assessment

▸ Security Awareness

▸ ISO 27001 certification

▸ Consultancy 
 
https://www.tekkamaki.nl

SECURITY IN AGILE ONLINE SOFTWARE DEVELOPMENT

THE CONTEXT

▸ Scrum-based development

▸ Online app or service

▸ Microservice architecture

▸ Containers running in a scheduler
(k8s / Nomad / Mesos)

▸ CI/CD

▸ Highly agile and lots of releases
per week

SECURITY IN AGILE ONLINE SOFTWARE DEVELOPMENT

TYPICAL WORKFLOW

▸ Source code uploaded to repository (git)

▸ CI is triggered by web hook

▸ Check out source code

▸ Download dependencies (from internal repositories or externally)

▸ Build code

▸ Unit test code

▸ Build artifacts (packages, containers, images)

▸ Upload artifacts to repository

SECURITY IN AGILE ONLINE SOFTWARE DEVELOPMENT

TYPICAL WORKFLOW - CONT
▸ Deploy to non-production environment

▸ Integration tests

▸ Regression tests

▸ Performance tests

▸ Stress tests

▸ Security tests?

▸ Tag artifact as production

▸ Deploy in production

SECURITY IN AGILE ONLINE SOFTWARE DEVELOPMENT

ARTIFACTS TO WATCH

▸ OS packages

▸ Local repositories:

▸ Source code

▸ Mirrored OS package repositories

▸ Dependencies in code (external libraries)

▸ Packages built from own source

▸ Container images

▸ Machine images

SECURITY IN AGILE ONLINE SOFTWARE DEVELOPMENT

CONTAINER LAYOUT

▸ Dockerfile: 
 
FROM ubuntu:18.04  
COPY . /app 
RUN make /app 
CMD python /app/app.py

▸Multi stage Dockerfile:  
 
FROM golang:1.11-alpine AS build 
RUN go get github.com/golang/dep/cmd/dep 
[...] 
RUN go build -o /bin/project 
 
FROM scratch 
COPY --from=build /bin/project /bin/project

SECURITY IN AGILE ONLINE SOFTWARE DEVELOPMENT

CONTAINER BEST PRACTICES

▸ Leave everything out that’s not needed at runtime

▸ More secure - less to abuse

▸ Faster upload

▸ Faster boot

▸ Less memory / disk usage

▸ No sensitive data

▸ Build everything automatically in CI

▸ Tag containers with metadata to find versions in production

SECURITY IN AGILE ONLINE SOFTWARE DEVELOPMENT

CLOUD IMAGE BUILDS

▸ packer: build cloud OS-images:  
 
{  
 "variables": { 
 "region": "us-east-1" 
 }, 
 "builders": [{ 
 "ami_name": "gruntwork-packer-training-rails-{{isotime | clean_ami_name}}", 
 "source_ami_filter": { 
 "filters": { 
 "name": "*ubuntu-xenial-16.04-amd64-server-*", 
 }, 
 }], 
 "provisioners": [{ 
 "type": "shell", 
 "script": "{{template_dir}}/install-rails.sh" 
 },{ 
 "type": "file", 
 "source": "{{template_dir}}/../example-rails-app", 
 "destination": "/home/ubuntu" 
 }] 
}

SECURITY IN AGILE ONLINE SOFTWARE DEVELOPMENT

CLOUD IMAGES

▸ Just as container images: based on OS version, with
possible vulnerabilities built-in

▸ Again: make them as small as possible

▸ Do not store sensitive data in images

▸ Build automatically

▸ Test security automatically (tripwire for devops / Lynis /
Nessus)

SECURITY IN AGILE ONLINE SOFTWARE DEVELOPMENT

COMMON VULNERABILITIES AND EXPOSURES (CVE)

▸ Make sure you receive them (mail, rss, other), filter where
appropriate

▸ Make sure CI/CD is automated so a rebuild can be
triggered with a keystroke

▸ Problem: what exactly do we run and include?

SECURITY IN AGILE ONLINE SOFTWARE DEVELOPMENT

SOLUTIONS

▸ Reproducible-builds.org - have verifiable assets

▸ Sqreen.com - application scanning

▸ Trivy - Vulnerability Scanner for Containers

▸ Whitesourcesoftware.com - monitor and alert OS
components

▸ Stackrox.com - scan containers

▸ Threatstack.com - monitor cloud behaviour

SECURITY IN AGILE ONLINE SOFTWARE DEVELOPMENT

CONCLUSIONS

▸ It’s easy to have vulnerabilities in your infrastructure or
code

▸ Make sure no unneeded code is deployed

▸ Automate build and deploy to make incident response
easy, reproducible, fast

▸ Look for tools that support your workflow

QUESTIONS

