CRYPTOGRAPHIC APPLICATIONS OF QUANTUM MECHANICS

Thomas Attema – Thomas. Attema@tno.nl

QUANTUM TECHNOLOGY

OPPORTUNITY FOR CRYPTOGRAPHY

THREAT TO CRYPTOGRAPHY

CONTENT

- > Observer effect
 - Quantum key distribution
 - > Quantum authentication
- No-cloning theorem
 - Position verification
- > Entanglement
 - > Device independent cryptography

OBSERVER EFFECT

THE OBSERVER EFFECT

- The observation of a physical state changes that state
 - > This effect can often be made negligible

HEISENBERG'S UNCERTAINTY PRINCIPLE

- Heisenberg thought to have captured the observer effect in his uncertainty principle
- > **Position** versus **momentum** of particles
- This uncertainty is *not* caused by the measurement
 - > Inherent property of quantum mechanics

HEISENBERG'S UNCERTAINTY PRINCIPLE

THE SAME ACTION CAN HAVE DIFFERENT CONSEQUENCES

OBSERVER EFFECT IN QUANTUM MECHANICS

- Measurements cause states to *collapse*
- Often the observer effect is used to describe this phenomenon
- > Application:
 - Quantum key distribution

QUANTUM KEY DISTRIBUTION

Intuitively - Security based on the observer effect

(())

QUANTUM AUTHENTICATION

- Physical Unclonable Functions (PUFs)
 - > Digital fingerprint
- Risk
 - Digital emulation

PUF - CLASSICAL AUTHENTICATION

QUANTUM AUTHENTICATION

13 | Cryptographic applications of quantum mechanics

TNO innovation for life

NO-CLONING THEOREM

CLONING QUANTUM MECHANICAL STATES IS IMPOSSIBLE

- > By cloning one could measure quantum states without collapsing them
 - > QKD would not be secure

POSITION BASED CRYPTOGRAPHY

> Authenticate solely based on geographical location

Security assumption

Communication faster than the speed of light is impossible

Alice

POSITION VERIFICATION – NAÏVE PROTOCOL

POSITION VERIFICATION – NAÏVE PROTOCOL

QUANTUM POSITION VERIFICATION

DISCLAIMER - QUANTUM POSITION VERIFICATION

- > Quantum mechanics only gives a partial solution
- > More advanced quantum attacks exist to break the above scheme
 - > New assumptions on the adversary are required

ENTANGLEMENT

ENTANGLEMENT

- > Entangled states can not be described without referring to each other
 - > Even if they are separated
- > This results in correlations that can not exist classically
- > Quantum mechanics is a *non-local* theory
 - > Does not violate relativity

innovation

TNO innovation for life

ENTANGLEMENT BASED KEY DISTRIBUTION

- Security follows from monogamy of entanglement
 - Two maximally entanglement particles can not be entangled to a third particle
- Device independent key distribution
 - QKD where we do not have to trust the devices or manufacturer

SUMMARY

- Quantum mechanics allows for cryptographic functionalities that are *impossible* classically
- > But implementing these functionalities is challenging

THANK YOU FOR YOUR ATTENTION

122212

innovat for life

THE PARTY P

Take a look: TNO.NL/TNO-INSIGHTS