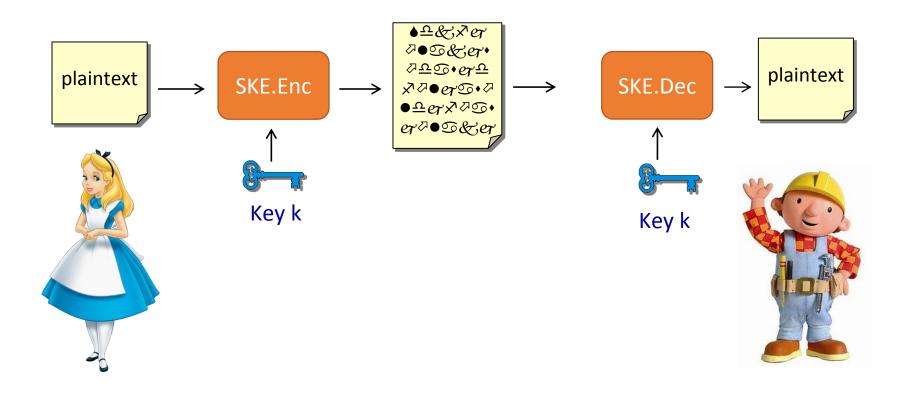
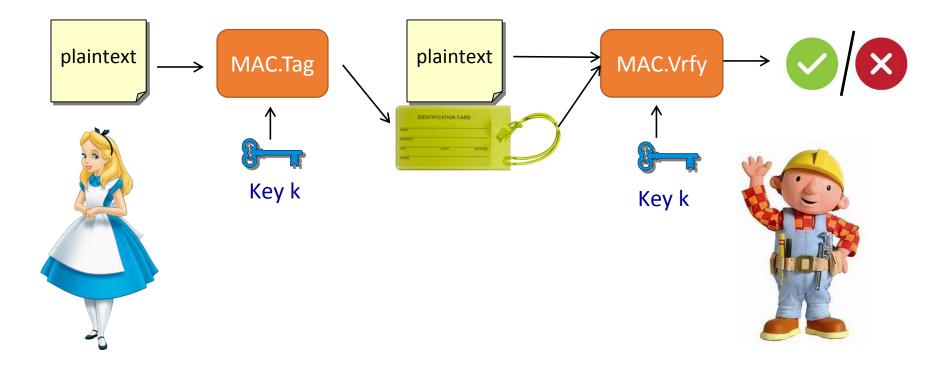
Post-Quantum Cryptography


Andreas Hülsing TU Eindhoven

Quantum kills the Internet



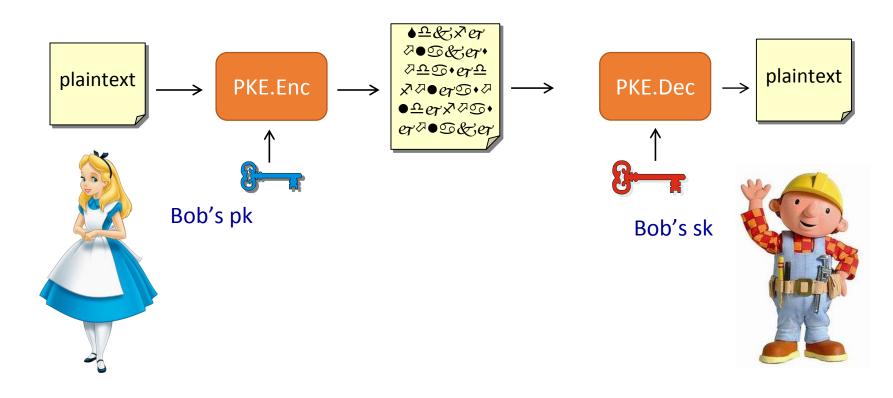
Background: Cryptography

Secret key encryption (SKE)

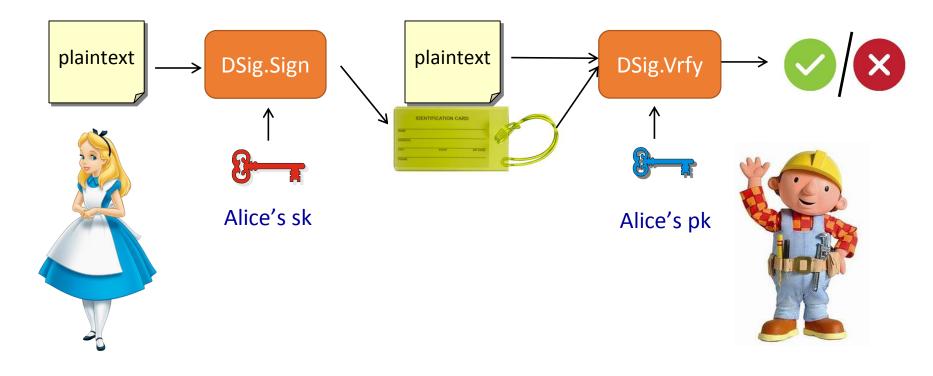
Message authentication (MAC)

How to build secret key crypto?

- Random function sufficient (we need one-wayness)
- Attacks ≈ unstructured search



* Disclaimer: Massive simplification


11/21/2019

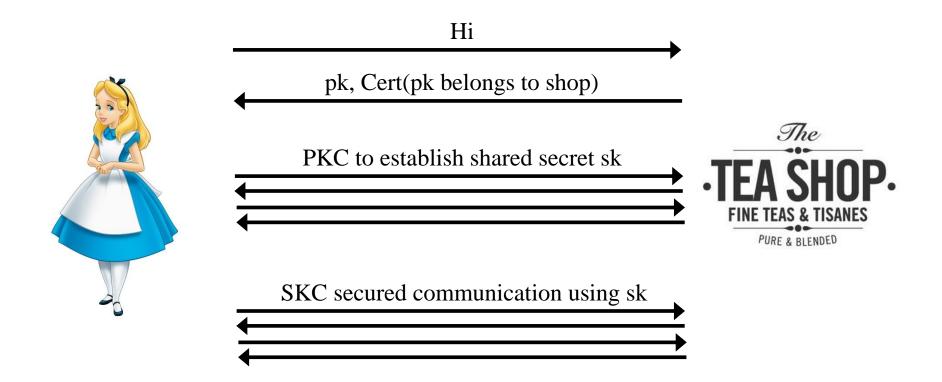
How does Bob learn shared key k?

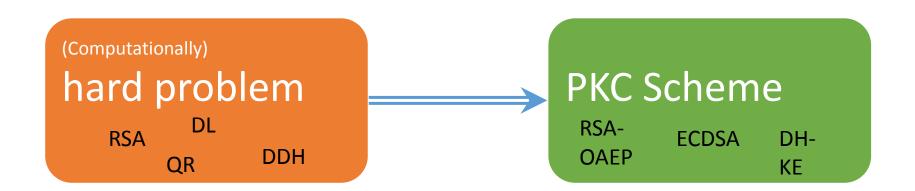
Public key encryption (PKE)



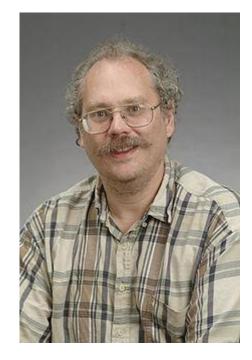
Digital Signature (DSig)

Applications

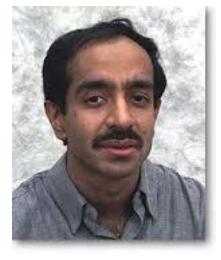

- Code signing (DSIG)
 - Software updates
 - Software distribution
 - Mobile code

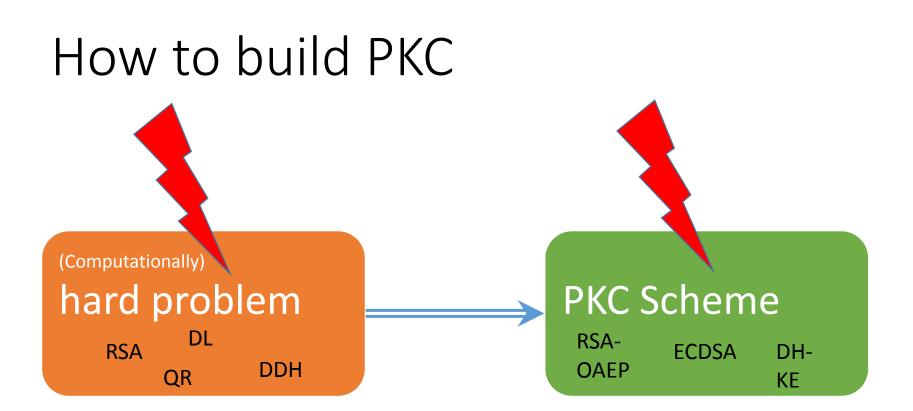

- Communication security (DSIG, PKE / KEX / KEM)
 - TLS, SSH, IPSec, ...
 - eCommerce, online banking, eGovernment, ...
 - Private online communication

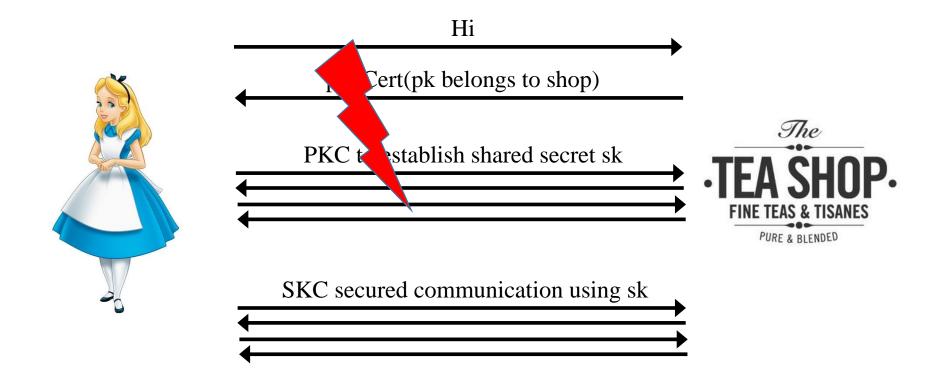
Communication security (simplified)


How to build PKC

The Quantum Threat


Shor's algorithm (1994)


- Quantum computers can do FFT very efficiently
- Can be used to find period of a function
- This can be exploited to factor efficiently (RSA)
- Shor also shows how to solve discrete log efficiently (DSA, DH, ECDSA, ECDH)


Grover's algorithm (1996)

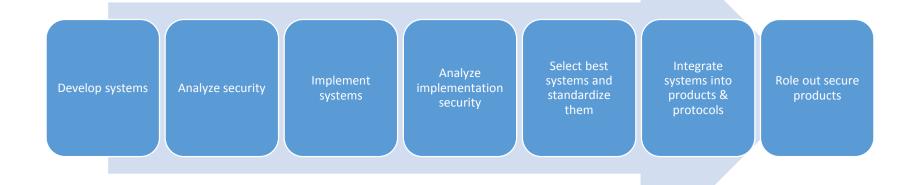
- Quantum computers can search N entry DB in $\Theta(\sqrt{N})$
- Application to symmetric crypto
- Nice: Grover is provably optimal (For random function)
- Double security parameter.

Communication security (simplified)

Why care today

- **EU** launched a one billion Euro project on quantum technologies
- Similar range is spent in China
- US administration passed a bill on spending \$1.275 billion US dollar on quantum computing research
- Google, IBM, Microsoft, Alibaba, and others run their own research programs.

Technology


Forget the Trade War. China Wants to Win Computing Arms Race

By <u>Susan Decker</u> and <u>Christopher Yasiejko</u> 9. April 2018, 01:00 MESZ *Updated on 9. April 2018, 16:50 MESZ*

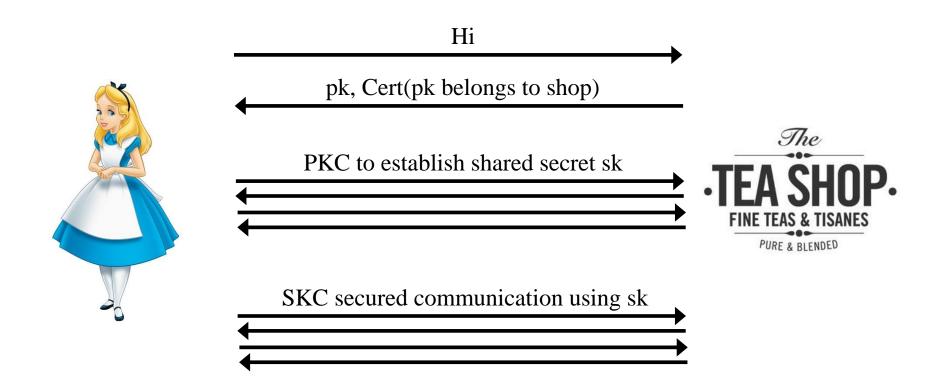
 Next wave could tra 	ansform everything from medicine to crops	LIVE ON BLOOMBERG	
 China is racing with 	U.S. companies for the quantum tech lead	Watch Live TV > Listen to Live Radio >	
SHARE THIS ARTICLE	As the U.S. and China threaten to impose tariffs on goods from aluminum to	Most Read	
Share	wine, the two nations are waging a separate economic battle that could	TECHNOLOGY	
🖋 Tweet		Beijing to Judge Every Resident	
n Post		Based on Behavior by End of 2020	
🐱 Email	Chinese universities and U.S. technology companies, such as International Business Machines Corp. and Microsoft Corp., are racing to develop	TECHNOLOGY	
In this article	quantum computers, a type of processing that's forecast to be so powerful it can transform how drug makers, agriculture companies and auto manufacturers discover compounds and materials.	Scared Your DNA Is Exposed? Then Share It, Scientists Suggest	
IBM IBM 117.19 usp ▼ -1.38 -1.16%		MARKETS As Oil Plunges, the Real OPEC Meeting Will Be at Next Week's G20	
INTC	Quantum computing uses the movement of subatomic particles to process	-	
46.54 USD ▼ -0.49 -1.04%	data in amounts that modern computers can't handle. Mostly theoretical now, the technology is expected to be able to perform calculations that	MARKETS Oil Limps to Worst Week in Almost Three Years as Glut Fears Grow	

It's a question of risk assessment

Real world cryptography development

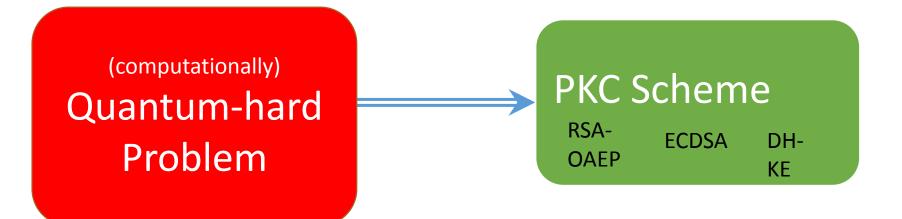
Who would store all encrypted data traffic? That must be expensive!

Long-lived systems


- Development time easily 10+ years
- Lifetime easily 10+ years
- At least make sure you got a secure update channel!

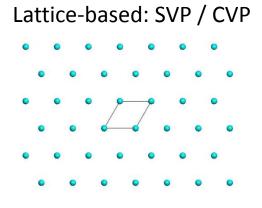
What about QKD?

Recall: Communication security (simplified)

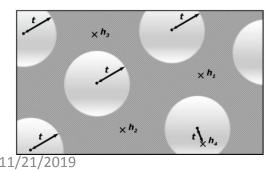

The problem solved by QKD

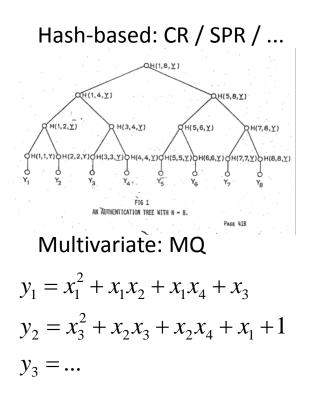
Given

- a shared classical secret.
- a phys QKD
 compa chann *"Key growing"*(≠ "Key establishment")
- generate a longer shared classical secret.


Solution to the problem caused by Shor? Post-quantum cryptography

How to build PKC




Early post-quantum crypto

"Cryptography based on problems that are conjectured to be hard even for quantum computers."

Code-based: SD

Andreas Hülsing https://huelsing.net

Modern post-quantum crypto

"Users using cryptography on conventional computers facing quantum adversaries"

Adds questions like

- How to argue security?
- Are our security models sound?
- What is the complexity of actual quantum attacks?

NIST Competition

NIST National Institute of S Information Technology Lab	tandards and Technology SEARCH:	Search		
	CONTACT SITE MAP			
Computer Security Division				
Computer Security Resource Center				
CSRC Home About Projects / Research Publications News & Events				
CSRC HOME > GROUPS > CT > POST-QUANTUM CRYPTOGRAPHY PROJECT				
Deet Overstein Oversteinen her		PROJECT		
Post-Quantum Cryptography Project	POST-QUANTUM CRYPTO PROJECT	PROJECT		
	POST-QUANTUM CRYPTO PROJECT			
Project	POST-QUANTUM CRYPTO PROJECT NEWS December 15, 2016: The National Institute of Sta	andards and		
Project Documents	POST-QUANTUM CRYPTO PROJECT NEWS December 15, 2016: The National Institute of Sta Technology (NIST) is now accepting submissions for quant cryptographic algorithms. The deadline for submission is A	andards and um-resistant public-key Iovember 30, 2017.		
Project Documents Workshops / Timeline	POST-QUANTUM CRYPTO PROJECT NEWS December 15, 2016: The National Institute of Sta Technology (NIST) is now accepting submissions for quant	andards and um-resistant public-key Iovember 30, 2017.		

"We see our role as managing a process of achieving community consensus in a transparent and timely manner" NIST's Dustin Moody 2018

Status of the competition

- Nov 2017: 82 submissions collected
- Dec 2017: 69 "complete & proper" proposals published
 - -> Starts round 1 (of 2 or 3 rounds)
- Jan 2019: 26 proposals selected for 2nd round.
 - 17 KEM, 9 Signature
- 2022 2024 Draft standards exist

General conflict

Performance

Open questions

Proofs are complicated

Possible issues with "proofs"

"Security proof" = proof that breaking scheme is as hard as solving hard math problem

- Some proofs are in the wrong models
- Some proofs are massively loose
- Some proofs are just wrong

In PQC we have to deal with new math, new models of computation & security!

Way out?

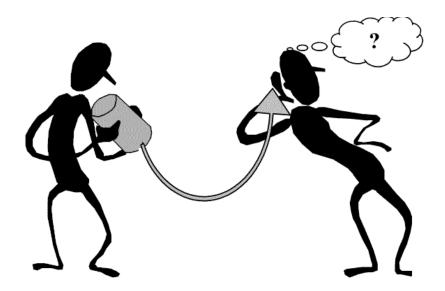
- Reviewing is hard, time-consuming, and not rewarding
- Possible solution: Computer-verified proofs

Protocol integration

Plug'n'play?

- Today's protocols are built around DH
- NIST selects KEM and DSig
- Performance gap between SKC and PKC widens
- Efficient schemes are less mature than today's crypto
- Requires new protocol design

Conclusion


- When large-scale QC are built, we need new PKC
- It remains a question of risk assessment
- We are making progress to standardize PQC but we still need time
 - (For applications with long-term secrecy requirements you can move now at the price of higher costs)

Resources

- PQ Summer School: http://www.pqcschool.org/
- NIST PQC Standardization Project: https://csrc.nist.gov/Projects/Post-Quantum-Cryptography

Thank you! Questions?

